Early classification of spatio-temporal events using partial information
نویسندگان
چکیده
منابع مشابه
Recognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملForecast Oriented Classification of Spatio-Temporal Extreme Events
In complex dynamic systems, accurate forecasting of extreme events, such as hurricanes, is a highly underdetermined, yet very important sustainability problem. While physics-based models deserve their own merits, they often provide unreliable predictions for variables highly related to extreme events. In this paper, we propose a new supervised machine learning problem, which we call a forecast ...
متن کاملHuman Action Recognition Using Spatio-temporal Classification
In this paper a framework “Temporal-Vector Trajectory Learning” (TVTL) for human action recognition is proposed. In this framework, the major concept is that we would like to add the temporal information into the action recognition process. Base on this purpose, there are three kinds of temporal information, LTM, DTM, and TTM, being proposed. With the three kinds of proposed temporal informatio...
متن کاملSpatio - Temporal fMRI Signal Analysis Using Information
Using Information Theory by Junmo Kim B.S., Seoul National University (1998) Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY Au ust 2000 © Massachusetts Institute of Technology 2000. All rights reserved. MASSACHUSETTS IN...
متن کاملClassification of Spatio-temporal Data
This paper presents a new approach in spatio-temporal data classification. This classification can be used in many branches including robotics, computer vision or medical data analysis. Due to easy transformation of time dimension of spatio-temporal data into the phase of complex number, the presented approach uses complex numbers. The classification is based on a complex-valued neural network ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS ONE
سال: 2020
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0236331